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Freezing of Nonequilibrium Domain Structures 
in a Kinetic Ising Model 
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We study the freezing of a disordered spin structure upon continuous cooling to 
absolute zero for a kinetic lsing spin chain with alternating weak and strong 
bonds. The kinetic equation for the spin pair correlation function is solved 
analytically in a continuum approximation. The exponent for the asymptotic 
dependence of the frozen kink density on a characteristic cooling time is found to 
be z 1, where z is the equilibrium dynamic critical exponent, for a universality 
class including power-law and exponential cooling, and �89 for a logarithmic 
cooling program which exhibits threshold behavior. 
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Many  cases occur in condensed matter  physics where a disordered non- 
equilibrium structure is frozen in during cont inuous cooling to low tem- 
peratures. Examples range from the freezing of r andom domain  structures 
in certain crystalline and magnetic materials to the glass transition of 
undercooled liquids (see ref. 1 for a recent review). In these various freezing 
phenomena  the frozen structure typically depends on the conditions of 
cooling, and this is of practical importance in material preparation. To 
characterize the structure frozen in at low temperature and to clarify its 
dependence on the conditions of  cooling, a kinetic theory of the structural 
evolution during the cooling process is called for. In this paper we present 
such a theory for the freezing of a r andom domain  structure in an Ising 
spin chain with Glauber  kinetics. 

Phenomenologica l  descriptions of freezing based on the concept  of a 
"fictive temperature ''(2,3) can, for glass transitions, very successfully model  
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the nonlinear relaxation of particular physical properties, which reflects the 
evolution of the internal structure. (4'5) However, nonequilibrium structures 
are not usually adequately characterized by a single fictive temperature, 
and fictive temperatures depend on which physical quantity they derive 
from. Therefore, theoretical models are required in which internal structure 
is described in more detail and many modes participate in the freezing 
process. So far, freezing and nonlinear relaxation in such models have 
only been studied by numerical simulation, (8 1o) with the exception of an 
approximate treatment of disordered Ising spin chains, ~11) and the solution 
of a phenomenologically generalized master equation./12'18) The spin model 
put forward in this paper has the advantage of being amenable to analyti- 
cal calculation. 

We consider a one-dimensional kinetic Ising model with Glauber 
single-spin-flip dynamics (13) and alternating weak (B) and strong (A) 
exchange couplings between pairs of nearest-neighbor spins. The non- 
uniformity of the exchange couplings (A > B) is essential for the freezing of 
nonequilibrium spin configurations at low temperatures. As discovered 
recently, (14"~5) it also gives rise to a nonuniversal dynamic critical exponent 
z = 1 + A / B  > 2 for the dynamics of equilibrium fluctuations near zero tem- 
perature. This exponent will also play a role in the freezing phenomena dis- 
cussed here. The structure of the spin chain is characterized by the distribu- 
tion of "kinks," which are pairs of antiparallel nearest-neighbor spins. The 
kinks are the boundaries of ordered domains of parallel spins. The energy 
of a kink is 2A on a strong, and 2B on a weak bond. At sufficiently low 
temperature nearly all kinks will occur on weak bonds. For a kink to hop 
from a weak bond to a neighboring one an activation energy 2 ( A -  B) is 
required for passing the strong bond in between. Upon cooling, the ther- 
mally activated diffusion of kinks slows down more and more until, at zero 
temperature, all remaining kinks, which have escaped pair annihilation at 
finite temperatures, are frozen. In this work, a kinetic theory of non- 
equilibrium relaxation and freezing of the spin structure of this model is 
presented. In particular, we calculate the frozen kink density at zero tem- 
perature for three very different types of cooling. Whereas for power-law 
and exponential cooling a finite kink density is always frozen in, we find a 
threshold behavior for inversely logarithmic cooling. At the same time, 
generic features occur, including universal relationships between controlling 
variables and between frozen-in kink density and cooling rate. In the com- 
monest universality class the kink density/cooling rate relationship for slow 
cooling involves the critical exponent z. In addition, some memory of the 
initial equilibrium state is retained in general. 

We give special attention to those features of our model which are 
characteristic of a multivariable description as opposed to a phenome- 
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nological fictive-temperature theory. These features arise because in the 
model, as in collective systems in general, the participation of many modes 
leads to a spectrum of rates than just one Arrhenius rate related to a single 
energy barrier. 

We describe the temporal evolution of the spin structure during 
cooling by the time-dependent spin pair correlation function gi1(t)= 
(a+a/) , .  This function determines the average kink and energy density, 
susceptibility, etc. In the one-dimensional kinetic Ising model used here the 
equation of motion for the pair correlation function, which derives from 
the master equation, is not coupled to any correlation functions of higher 
order. Since each of the two spins in ( a i a / )  can be on either sublattice of 
the alternating chain, four types of correlation function occur. Elimination 
provides an equation involving just one type. The equation can be sim- 
plified, without losing any of the essential physical content, by discarding 
higher-order time derivatives and using a continuum approximation. These 
reductions are valid if the cooling process is slow and starts from equi- 
librium at an initial temperature To low enough to make kinks relatively 
improbable on strong bonds and to give a long initial correlation length 4o 
(which is the initial kink separation). The continuum version of the equa- 
tion of motion which then applies for the translationally invariant spin 
correlation function g(x i -  xj, t)= (aiaj)t  reads 

(c~t+co+_co ~2) g(x, t ) - -0  (1) 

In (1) the length of x = x i - x j  is measured in units of the nearest 
neighbor distance and the time is in units of the inverse spin flip attempt 
frequency; the relaxation rate co+ and hopping rate (or diffusion 
"constant") co are given by the low-temperature expressions co_+= 
exp[--2fl(A +_ B)] where fl = 1/(kB T). Equation (1), on which our calcula- 
tions of relaxation and freezing are based, is a hybrid between a relaxation 
equation and a diffusion equation. A discrete version of (1), obtained by 
introducing ad hoc an Arrhenius temperature dependence of the spin flip 
rate to the Glauber equation for a uniform Ising chain, has been solved 
previously to arrive at a detailed discussion for a fast quench. (12) Recently, 
for the uniform chain some results have also been derived for slow 
quenches. (18) We emphasize that it is the slow quench (at low temperature) 
which we treat, for which (1) provides the correct description of the 
microscopic alternating bond model. 

For equilibrium the correlation function is obtained as 

geq(X)  = exp(-[x[/~),  ~ = (CO_/( / )  + )1/2 (2) 

It is useful to introduce a ratio v = (A + B ) / ( A -  B)>  1, in terms of 
which co+ = co~. For continuous cooling from the initial equilibrium tern- 
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perature To to temperature zero the rates co_+ are functions of time which 
depend on the particular cooling program (see below). Given these func- 
tions, Eq. (1) has to be solved for x i> 0 subject to the boundary condition 
g(0, t ) = l  and the initial condition g ( x , O ) = e x p ( - x / ~ o ) ,  where ~o---- 
exp(2fl0B) is the correlation length at To. Although Eq. (1) is linear, its 
eigenmodes are coupled by virtue of the boundary conditions. 

Equation (1) can be converted to the usual diffusion equation with a 
constant diffusion coefficient of unity by introducing a new variable u(t) 
and integrating factor exp[I(t)],  where 

u =  co_(s )&,  I =  co+(s )ds=J(u )  (3) 

u(t) is an average number of hops of a kink until time t and I(t)  is a 
"reduced time" measured in units of the time-dependent relaxation time 
1/co+. As shown below, the existence of a nonzero kink density at zero 
temperature depends on whether u(oo) is finite or infinite. The solution of 
Eq. (1) is now obtained as 

g(x, t) = e s(,l(gt(x ' u) + q~(x, u)) (4) 

where ~u, q~ solve the usual diffusion equation with u as time variable and 
with boundary and initial conditions given by: 

(i) gJ(x ,O)=g(x ,O) ,  x>~O, and ~u(0, u )=0 ,  u > 0 .  

(ii) 4~(x, 0 )=0 ,  x~>0, and qs(0, u ) = e  s("),u>~0. 

The function 7J(x, u) contains a memory of the initial situation, while q5 
depends solely on the cooling process. Using standard methods of solution 
for the diffusion equation, (16) one finds [with y --= x/(2 , ~ ) ] ,  

2 ['~ q sin(qx) 
~P(x, u ) = -  dq e q2, 

7~ J 0  q2+ ~o2 
(5) 

~(x ,  u) = 7 ds e J(u - (,/2s)2~ .~2 

The solution (4), (5) for the pair correlation function depends on the 
particular cooling program through the functions u(t) and J(u) defined in 
(3). We consider three typical cases, in which the inverse temperature 
increases with time linearly (I), exponentially (II), and logarithmically 
(III). In each case zero temperature is reached only asymptotically for 
t--. o% in agreement with the principle of the unattainability of absolute 
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zero. In all three cases the same generic form of J(u) is obtained, which 
reads 

J ( u )  = [1  - (1 - c u ) q / ( c ~ )  (6 )  

However, the results for c = 1/u(cc) and ~t differ in case III  from those in 
cases I and II, leading to markedly different freezing-in behavior. With 
b = ( 2 1 n  ~o)/(v-1), the values of the parameters together with the 
functions u(t) are given by: 

(I) c = (beb)/r, kt = v, with 

u ( t )=  [1-exp( -b t / r ) ] /c  for fl(t)=flo(1 +t/r) 

(II) The same expressions for c and kt as in case I, with 

u =  { 1 - e x p [ b - b e x p ( t / ~ ) ] } / c  for fl(t)=floexp(t/r) 

where b >> 1 is assumed. 

(III)  c =  ( d -  1) rd-1, /~ = (vd-- 1 ) / ( d -  1), with 

u ( t ) = [ l - ( l + t / z ) l - d ] / c  for fi(t)=floln(t+z)/lnz 

with d = b/ln r. 

While in the linear (I) and exponential (II) cases u (oo)=  c -1 diverges only 
for r --* 0% in case III,  the logarithmic cooling program, z has a finite criti- 
cal value of e b. Moreover u ( o o ) = c  -1 and J(u(oo))=(c#~ 2) 1 diverge 
simultaneously in cases I and II, whereas in case III  there is a range of 
values e b ~<~< e ~b where u(oo) is infinite, but J(u(oe)) is still finite. As a 
result of these differences, the conditions for the freezing of a disordered 
domain structure at zero temperature are different for the linear or 
exponential case on one hand and the logarithmic case on the other. The 
cooling processes thus divide into two classes, within each of which univer- 
sal freezing behavior occurs, because of (6). 

The most important  parameter  describing a frozen disordered spin 
structure is the average concentration K(oo) of kinks. Therefore, we are 
particularly interested in the dependence of this quantity on the time 
characterizing the speed of cooling for the various cooling programs. The 
average kink density K(t) is determined by the spin correlation function as 

K ( t )  = 1 - g ( x  = 1, t)  ( 7 )  

where we dropped a factor 1/2 for convenience. The asymptotic behavior 
of K(ov) for slow cooling, when u ( o o ) ~  o% c--, 0 § can be evaluated 
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explicitly. Using Eqs. (4)-(6), we obtain two contributions to K (~ ) .  The 
contribution of ~u, which is negative, is proportional to c 3/2 and negligible 
for small c. The leading contribution comes from q~ and is given by 

with an exponent a equal to z 1 in cases I and II, where z = 2v/(v - 1) is 
the dynamic critical exponent, f~3'14) and a =  1/2 in case III. In the latter 
case K ( ~ )  oc ( L . - z )  1/2 for z just less than the critical value L. = eb, while 
K ( ~ )  is zero for ~ > ~ .  As follows from expressions (4), (5), and (7), K ( ~ )  
vanishes if u ( ~ )  is infinite and J ( u ( ~ ) )  is finite, which is the case for the 
logarithmic cooling program when ~ < z < z~. Figure 1 gives the result of 
a numerical evaluation of the asymptotic kink density as a function of the 
rate variable c for cases I and II, using (4)-(7) for the specific values 
~o = 100, v = 2. It shows that the asymptotic law (8) correctly describes the 
decay of the initial kink density for slow cooling when c falls below ( o  2. 
For faster cooling (actually for c > 1/~o), K ( ~ )  approaches the initial value 
1/r corresponding to the initial equilibrium state, and provided by the 
"memory" contribution ~. The exponent z -1, which governs the slow 
cooling result for the linear and exponential cases, can be derived from 
the following simple physical argument. The average relaxation rate of the 
average kink concentration near equilibrium is given by c~+ = ~o_/~ 2 
e x p [ - 2 f l ( A  + B)]. Equating this relaxation rate to a characteristic rate of 

i 

10-~ [ I 

10-8 10-6 ~o z 10 -: 

Fig. l. A log-log plot of frozen (t = ~ )  kink density K versus cooling rate c for linear and 
exponential cooling processes (I, II of the text). The system has v = 2 and initial correlation 
length ~0 = 100. For c < ~ o  2, K~c(V-l~/zv; and for c>>~o 1, K ~ o  1. 
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the cooling process, which is inversely proportional to the time ~, we 
obtain the dependence of the freezing temperature Tj-= (kB/?S)-1 on r. The 
frozen kink density then follows as K ( ~ ) =  exp(-2/~sB ) oc v-z. A related 
anomalous diffusion/crossover argument has been given for the dynamic 
critical exponent z in the different context of equilibrium fluctuations near 
absolute zero. (14) Our argument is different from that used by Huse and 
Fisher, (~7~ according to which the exponent would be given by the ratio 
2B/(A - B) between the energy 4B of a pair of kinks on weak bonds and 
the activation energy 2(A - B) for kink hopping and kink pair annihilation. 
In our case the correlation length ~ also enters as the characteristic length 
of diffusion because of the truly collective character of the model. Recent 
work (18~ on the Reiss model (~2~ has also yielded a power-law behavior like 
(8): here the exponent is related to phenomenological barrier parameters, 
and can provide an account of the recent computations for Schilling's chain 
model. (1~176 We note, however, that real glass-forming liquids show a 
logarithmic rather than a power-law dependence of the intensity of frozen 
structural fluctuations on the cooling rate. (1"3) 

The argument leading in the previous paragraph to the exponent z-1 
is convincing if the freezing of the kink density occurs within a relatively 
narrow temperature interval. Figure 2 gives in terms of the time-varying 
temperature T(t) the evolution of the kink density during cooling programs 
I and II. These linear and exponential cases give the same result because 
elimination of t between u(t) and /?(t) leads to the same function u =  
{1-exp[b(/~o-/~)/ /~o] }/c. This is an explicit manifestation of the univer- 
sality referred to earlier. Figure 2 shows that in cases I and II freezing over 
a narrow temperature interval indeed occurs if the cooling is sufficiently 
slow. Lowering the cooling rate both shifts the region of freezing to lower 
temperatures and makes the transition sharper. For the logarithmic cooling 
program III the physical crossover argument fails because in this case 
K ( ~ )  vanishes for r ~ e b rather than for the "critical" limit ~ ~ 0% and a 
simple diffusion exponent 1/a = 2 applies. The richness of the behavior of 
the system is related to the existence of a broad spectrum of relaxation 
times, which corresponds to the distribution of wavelengths of the diffusion 
modes. The superposition of these occurring depends on universal charac- 
teristics of the cooling program in general, and the difference between the 
dependence of asymptotic kink density on cooling rates in cases I and II 
and in case III clearly reveals the existence of two different classes of 
distributions of relaxation times participating in the freezing process. 

The participation of many modes is apparent also from the form of the 
spin correlation function g(x, oo) characterizing the frozen spin structure. 
For small x the relation g(x, ov) , -~exp [ -K(ev )x ]  follows from Eq. (7), 
whereas for very large x the decay of g(x, oo) is still determined by 

822/62/1-2-28 
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Fig. 2. Kink density as a function of temperature for cooling processes I and II at three 
different cooling rates c. The dashed line shows the equilibrium kink density at any 
temperature. In all cases v = 2 and ~o = 100. 

the initial correlation length 40, though with an enhanced coefficient: 
g(x; ~)~aexp(-x/~o), where a = e x p [ ( y -  1)/(#c~2)] > 1. Thus, the 
correlation function deviates strongly from the simple exponential decay 
of the equilibrium form (2), so a characterization in terms of a fictive 
temperature is at best approximate. The multimode dynamics of our 
model also leads to a nonexponential relaxation of the kink density after 
a temperature jump to a nonzero final temperature. These results will 
be described in more detail in a separate publication. 
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